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Abstract

We improve the performance of sparse matrix-vector multiply (SpMV) on mod-
ern cache-based superscalar machines when the matrix structure consists of multiple,
irregularly aligned rectangular blocks. Matrices from finite element modeling applica-
tions often have this kind of structure. Our technique splits the matrix, A, into a sum,
A1 + A2 + . . . + As, where each term is stored in a new data structure, unaligned block
compressed sparse row (UBCSR) format . The classical alternative approach of storing
A in a block compressed sparse row (BCSR) format yields limited performance gains
because it imposes a particular alignment of the matrix non-zero structure, leading to
extra work from explicitly padded zeros. Combining splitting and UBCSR reduces this
extra work while retaining the generally lower memory bandwidth requirements and
register-level tiling opportunities of BCSR. Using application test matrices, we show
empirically that speedups can be as high as 2.1× over not blocking at all, and as high
as 1.8× over the standard BCSR implementation used in prior work. When perfor-
mance does not improve, split UBCSR can still significantly reduce matrix storage.

Through extensive experiments, we further show that the empirically optimal num-
ber of splittings s and the block size for each matrix term Ai will in practice depend on
the matrix and hardware platform. Our data lay a foundation for future development
of fully automated methods for tuning these parameters.

1 Introduction

Although sparse matrix-vector multiply (SpMV) dominates the performance of diverse ap-
plications in scientific computing, economic modeling, and information retrieval (among
others), conventional implementations have historically run at 10% of peak or less on
uniprocessors [35]. Achieving higher performance requires choosing a compact data struc-
ture and appropriate code transformations that best exploit properties of both the sparse
matrix—which may be known only at run-time—and the underlying machine architecture.
The conventional data structure, compressed sparse row (CSR) format, stores each non-
zero value along with an integer index to denote its position in the matrix. Thus, sparse
kernels incur more computational overhead per non-zero matrix entry than their dense
counterparts—overheads in the form of extra instructions and, critically, extra indirect and
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irregular memory accesses. We and others have studied a wide variety of techniques both
for selecting data structures to reduce this overhead and for automatically tuning the re-
sulting implementations (Section 6). In the best cases, tuned implementations of SpMV
achieve up to 31% of machine peak and speedups as high as 4× over CSR [15, 35, 37].

The best performance occurs for finite element method (FEM) modeling applications,
but within this class there is a performance gap between matrices whose assembled non-
zero structure consists primarily of dense blocks of a single size, uniformly aligned, and
matrices whose structure consists of multiple block sizes with irregular alignment. Figure 1
shows the structural differences: Figure 1 (left) shows a matrix whose non-zero pattern
(blue dots) consists entirely of 8×8 dense blocks, uniformly aligned with respect to the
rows and columns, while Figure 1 (right) has more complex dense substructure. Users
typically exploit the structure of Figure 1 (left) using block compressed sparse row (BCSR)
format, which stores the matrix as a sequence of fixed-size r×c dense blocks, with roughly
one integer index stored per block instead of one per non-zero. Compared to CSR, BCSR
reduces the number of indices by 1

rc , and the fixed block size enables unrolling and register-
level tiling of each block-multiply. However, two difficulties arise in practice:

1. The best r×c varies both by matrix and by machine. Contrary to what most users
would reasonably expect, 8×8 is not the best block size on many platforms in the
seemingly simple case of Figure 1 (left) [35]. This fact motivates automatic tuning.

2. Any speedup is mitigated by explicit zero padding needed to obtain uniform
dense block substructure. On a Pentium III architecture, applying BCSR to Fig-
ure 1 (right) reduces the execution time of SpMV to 2

3 that of CSR, for a 1.5× speedup.
However, this technique must store explicit zeros to fill the blocks, here incurring
50% more flops [35]. Can we better capture the structure and choose a data structure
that reduces this extra work, yielding possibly even better speedups? This paper
considers (a) splitting the sparse matrix A into the sum A = A1 + · · ·+As, where each
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Figure 1: Block structure in practice. (Left) An 80×80 submatrix taken from a larger sparse
matrix in a fluid flow simulation based on the finite element method. Each dot is one
non-zero entry, and the non-zero pattern consists entirely of 8×8 dense blocks, uniformly
aligned as shown. (Right) A 50×50 submatrix from a different FEM fluid flow simulation.
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Figure 2: The speedup gap among application classes across platforms. We show min-
imum, maximum, and median summary statistics of BCSR speedup relative to CSR (i.e.,
unblocked 1×1 BCSR). For each platform, we separate data by application. Median frac-
tions for FEM Matrices 2–9 are shown by blue solid circles, for FEM Matrices 10–17 by
green solid squares, and for all remaining matrices by red asterisks. Arrows indicate a
range from the minimum fraction to the maximum.

Ai may be stored with a different block size, and (b) store each Ai in a flexible un-
aligned block compressed sparse row (UBCSR) format that relaxes both row and column
alignment conditions of BCSR, at the cost of indirect access to both x and y, instead
of just x as in BCSR and CSR.

How large is the gap in performance between the two FEM classes in practice? Fig-
ure 2, taken from Vuduc [35, Chap. 4], summarizes experimentally observed speedups of
BCSR-based SpMV compared to a conventional CSR implementation on 8 hardware plat-
forms using a set of 44 test matrices comprising the SPARSITY benchmark suite [15]. We
divide these matrices into three classes: FEM matrices 2–9, whose structure resembles Fig-
ure 1 (left), FEM matrices 10–17, whose structure resembles Figure 1 (right), and matrices
from all other applications (e.g., economic modeling, chemical process simulation, linear
programming).1 For each class on each platform, we show the minimum and maximum
speedup as the end points of an arrow, and the median speedup within a class by a colored
marker. The achieved speedups of the three classes are clearly separated, and the median
speedups for FEM 2–9 are between 1.1× and 1.54× higher than the median speedups for
FEM 10–17. This paper shows how split UBCSR can reduce this gap. An important by-
product of the split formulation is a significant reduction in matrix storage.

Furthermore, we show our split UBCSR SpMV runs in practice in as little as half the
time of CSR (2.1× speedup) and 5

9 the time of BCSR (1.8× speedup) on a variety of applica-
tion matrices with complex structure like that shown in Figure 1 (right) (Section 5). These

1Matrix 1 is a dense matrix stored in sparse format, and not a true application matrix. We therefore omit it.
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results are empirical, collected through experiments based on exhaustive search of many
possible implementations, each tunable for a given matrix and machine by the number of
splitting terms s and the block size for each term. Our characterizations of application ma-
trices and our data on split UBCSR performance gathered from these experiments, when
combined with prior work on automatic tuning, should lead to fully automated heuristics
for tuning these parameters. We are making our techniques available in the Optimized
Sparse Kernel Interface (OSKI) [36], a library of automatically tuned sparse matrix kernels
that builds on SPARSITY, an earlier prototype [15, 14].

2 Characterizing Variable Block Structure in Practice

Section 1 notes the performance gap between two subclasses of finite element method
(FEM) matrices (Matrices 2–9 vs. 10–17). To distinguish the dense block substructure of
these classes, we use variable block row (VBR) format [28, 26]. Roughly speaking, VBR de-
fines the matrix block structure by logically partitioning rows into block rows and columns
into block columns. In VBR, we find that Matrices 10–17 differ from 2–9 in two ways:2

• Unaligned blocks: Consider a dense r×c subblock whose upper-leftmost entry is
(i, j), where the matrix is m×n, 0 ≤ i < m, and 0 ≤ j < n. Then, block compressed
sparse row (BCSR) format assumes a uniform alignment constraint in which all blocks
have i mod r = j mod c = 0. Relaxing just the column alignment (by allowing j
mod c to be any value less than c) has in practice yielded modest improvements [7,
21]. When Matrices 12 and 13 are stored in VBR format, we find most non-zeros
are contained in blocks of the same size, but i mod r and j mod c are distributed
uniformly over all possible values up to r − 1 and c− 1, respectively. Our unaligned
block compressed sparse row (UBCSR) format relaxes row alignments as well.

• Mixtures of “natural” block sizes: Matrices 10, 15, and 17 possess a mix of block
sizes, at least when viewed in VBR format. This motivates decomposing the non-
zero substructure such that A = A1 + A2 + · · · + As, where each term Ai consists of
the subset of blocks of a particular size. Each term can then be tuned separately.

We present these observations for the matrices listed in Table 1, which includes a subset
of the matrices referred to previously as Matrices 10–17, as well as 5 additional matrices
(labeled Matrices A–E) from other FEM applications.

2.1 The FEM performance gap

To see the FEM gap, consider the performance of Matrix 12 using BCSR compared to the
best BCSR performance on FEM Matrices 2–9. Table 2 compares the best observed per-
formance for Matrix 12 (column 3) to both a reference implementation using compressed
sparse row (CSR) format storage (column 6) and the best observed performance on Matri-
ces 2–9 (column 2) several platforms. Performance is measured in Mflop/s, but does not
count flops due to fill (i.e., the flops on explicitly filled in zeros); thus, the reported perfor-
mance reflects inverse time. We show the best BCSR block size for Matrix 12 (column 4),
and we show the corresponding fill ratio, or ratio of the number of stored entries including

2We treat Matrix 11, which contains a mix of blocks and diagonals, using different techniques described
elsewhere [35, Chap. 5]; Matrices 14 and 16 are eliminated on our evaluation platforms due to their small size.
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No. of Dominant block sizes
# Matrix Dimension Non-zeros (% of non-zeros)
10 ct20stif 52329 2698463 6×6 (39%)

Engine block 3×3 (15%)
12 raefsky4 19779 1328611 3×3 (96%)

Buckling problem
13 ex11 16614 1096948 1×1 (38%)

3D flow 3×3 (23%)
15 vavasis3 41092 1683902 2×1 (81%)

2D partial differential equation 2×2 (19%)
17 rim 22560 1014951 1×1 (75%)

Fluid mechanics problem 3×1 (12%)
A bmw7st 1 141347 7339667 6×6 (82%)

Car body analysis
B cop20k m 121192 4826864 2×1 (26%), 1×2 (26%)

Accelerator cavity design 1×1 (26%), 2×2 (22%)
C pwtk 217918 11634424 6×6 (94%)

Pressurized wind tunnel
D rma10 46835 2374001 2×2 (17%)

Charleston Harbor model 3×2 (15%), 2×3 (15%)
4×2 (9%), 2×4 (9%)

E s3dkq4m2 90449 4820891 6×6 (99%)
Cylindrical shell

Table 1: Variable block test matrices. Matrices with variable block structure and/or non-
uniform alignment. Dominant block sizes r×c are shown in the last column, along with the
percentage of non-zeros contained within r×c blocks shown in parentheses. The sources
of these problems is summarized elsewhere [35, Appendix B].

explicit zeros to the number of true non-zero entries, at those block szies (column 5). In all
cases, we observe speedups over the reference. However, if we compute the fraction of the
best performance on Matrices 2–9 (by dividing column 3 by column 2) and then take the
median over all platforms, we find the median fraction to be only 69%.

In fact, Matrix 12 has a rich block structure which BCSR is not capturing precisely.
Figure 3 shows the 51×51 submatrix beginning at the (715, 715) entry of Matrix 12. In the
left plot, we superimpose the logical grid of 2×2 cells that would be imposed in BCSR, and
in the right plot we superimpose the grid of 3×3 cells. These block sizes require significant
fill-in of explicit zeros: the ratios of stored entries to true non-zeros, or the fill ratios, are
1.46 for 3×3, and 1.24 for 2×2. The desire to reduce this extra storage and work motivates
the techniques of this paper.

2.2 Characterizing block alignments

We can capture the block structure of Matrix 12 more precisely by storing the matrix in
VBR and analyzing its structure. (See Appendix A for a detailed description of VBR.)
Figure 4 (top) shows the same 51×51 submatrix shown in Figure 3 as it would be blocked
in VBR. We used a routine from the SPARSKIT library to convert the matrix from CSR to
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Matrices 2–9 Matrix 12-raefsky4
Maximum Best 1×1

Platform Mflop/s Mflop/s r×c Fill Mflop/s
Ultra 2i 57 38 2×2 1.24 33
Ultra 3 109 61 2×1 1.13 56
Pentium III 90 63 3×3 1.46 40
Pentium III-M 120 83 2×2 1.24 68
Power3 168 130 1×1 1.00 130
Itanium 1 214 172 3×1 1.24 140
Itanium 2 1122 774 4×2 1.48 276

Table 2: FEM performance gap when using BCSR format: Matrix 12-raefsky4 . We
show the best performance using BCSR (column 3), the best register block size ropt×copt
(column 4), and the fill ratio at ropt×copt (column 5) for Matrix 12-raefsky4 . This exam-
ple shows the typical gap between performance achieved on Matrices 10–17 and the best
performance on Matrices 2–9 (column 1). This data is taken from Vuduc [35, Chap. 4].
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Figure 3: Uniform block sizes can inadequately capture “natural” block structure. We
show the 51×51 submatrix beginning at element (715, 715) of Matrix 12-raefsky4 when
uniformly aligned 2×2 (left) and 3×3 (right) logical grids have been imposed, as occurs
when using BCSR. These grids do not precisely capture the true non-zero structure, leading
to fill ratios of 1.23 for 2×2 blocking, and 1.46 for 3×3 blocking.
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VBR format [28]. This routine partitions the rows by looping over rows in order, starting
at the first row, and placing rows with identical non-zero structure in the same block. The
same procedure is used to partition the columns. The distribution of non-zeros can be
obtained in one pass over the resulting VBR data structure. For Matrix 12, the maximum
block size in VBR format turns out to be 3×3. In Figure 4 (bottom-left), we show the fraction
of non-zeros contained in all blocks of a given size r×c, where 1 ≤ r, c ≤ 3. Each square
represents a value of r×c shaded by the fraction of non-zeros for which it accounts, and
labeled by that fraction. A label of ‘0’ indicates that the fraction is zero when rounded to
two digits, but there is at least 1 block at the given size. For Matrix 12, 96% of the non-zeros
occur in 3×3 blocks.

Although Matrix 12 is dominated by 3×3 blocks, these blocks are not uniformly aligned
on row boundaries as assumed by BCSR. In Figure 4 (bottom-right), we show the distribu-
tions of i mod r and j mod c, where (i, j) is the starting position in A of each 3×3 block,
and the top-leftmost entry of A is A(0, 0). The first row index of a given block row can start
on any alignment, with 26% of block rows having i mod r = 1, and the remainder split
equally between i mod r = 0 and 2. This observation motivates the use of a format like
UBCSR which allows more flexible alignments.

We summarize the variable block structure of the matrix test set used in this paper in
the rightmost column of Table 1. This table includes a short list of dominant block sizes
after conversion to VBR format, along with the fraction of non-zeros for which those block
sizes account. The reader may assume that the dominant block size is also irregularly
aligned except in the case of Matrix 15. More information on the distribution of non-zeros
and block size alignments appears elsewhere [35, Appendix F].

2.3 Characterizing mixed block structure

Some matrices, when stored in VBR, contain mixtures of block sizes. Figure 5 (top) shows
the distribution of blocks for Matrix D in Table 1. The dominant block size is 2×2, but
these blocks account for only 17% of the total non-zeros. Moreover, these block sizes may
also have arbitrary alignments as shown for 2×2 blocks in this matrix in Figure 5 (bottom).
Again, VBR provides one useful way to identify the existence of such structure.

3 A Split Unaligned Block Matrix Representation

For matrices with mixed or irregularly aligned dense block substructure, we consider the
following implementation of sparse matrix-vector multiply (SpMV):

1. Convert or store the matrix A first in VBR format. We modify the default SPARSKIT
CSR-to-VBR conversion procedure to allow some fill in of explicit zeros as a way of
changing the block size distribution.

2. Split A into a sum of s terms, A = A1 + · · · + As, according to the distribution of
block sizes observed when A is in VBR. We could theoretically select one term for
each block size in the distribution, though in practice we may not want to do so.

3. Store each term Ai in UBCSR format, an unaligned version of the traditional BCSR
format. UBCSR augments BCSR with an additional array of row indices, thereby
allowing each block row to start at any index. Thus, we only constrain all blocks in a
given block row to have a particular alignment.
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Figure 4: Logical grid (block partitioning) after greedy conversion to variable block row
(VBR) format: Matrix 12-raefsky4 . (Top) We show the logical block partitioning after
conversion to VBR format using a greedy algorithm. (Bottom-left) Approximately 96% of
the non-zero blocks are 3×3. (Bottom-right) Let (i, j) be the starting row and column index
of each 3×3 block. We see that 37.5% of these blocks have i mod3 = 0, 26% have i mod3 =
1, and the remaining 36.5% have i mod3 = 2. The starting column indices follow the same
distribution, since the matrix is structurally (though not numerically) symmetric.

The use of VBR is a heuristic for identifying block structure. The problem of finding the
maximum number of non-overlapping dense blocks in a matrix is NP-Complete [34], so
there is considerable additional scope for analyzing dense block structure.

Although VBR is useful for characterizing the structure as done in Section 2, VBR im-
plementations of SpMV typically have poor performance in practice. The innermost loops
of the typical VBR implementation carry out multiplication by an r×c block. However,
this block multiply cannot be unrolled in the same way as BCSR because the column block
size c may change from block to block within a block row. Performance in this format on
uniprocessors falls well below that of alternative formats [35, Chap. 2].
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Figure 5: Distribution and alignment of block sizes: Matrix rma10 . (Top) Distribution
of non-zeros by block size when the matrix is supplied in VBR format with no fill. A
numerical label, even if 0, indicates that at least 1 block had the corresponding block size.
A lack of a label indicates exactly 0 blocks of the given block size. (Bottom) Distribution of
row and column alignments for the 2×2 blocks. Specifically, we plot the fraction of 2×2
blocks whose starting row index i satisfies i mod r = 0, and whose starting column index
j satisfies j mod c = 0.

3.1 Converting to variable block row format with fill

The default SPARSKIT CSR-to-VBR conversion routine only groups rows (or columns)
when the non-zero patterns between rows (columns) matches exactly. However, this con-
vention can be too strict on some matrices in which it would be profitable to fill in zeros,
just as with BCSR. Below, we discuss a simple variation on the SPARSKIT routine that al-
lows us to create a partitioning based on a measure of similarity between rows (columns).

First, consider the example of Matrix 13. Table 1 indicates that this matrix has relatively
few block sizes larger than the trivial unit block size (1×1). However, the 52×52 subma-
trix of Matrix 13, depicted in Figure 6 shows that a few isolated zero elements break up
potentially larger blocks.

We relax the default partitioning using the following measure of similarity between
columns (or equivalently, rows). Let u and v be two sparse column vectors whose non-zero
elements are equal to 1. Let ku and kv be the number of non-zeros in u and v, respectively.
Let S(u, v) be the following measure of similarity between u and v:

S(u, v) =
uT· v

max(ku, kv)
(1)

This function is symmetric with respect to u and v, has a minimum value of 0 when u and
v have no non-zeros in common, and a maximum value of 1 when u and v are identical.

The following procedure uses this similarity measure to compute a block row parti-
tioning of an m×n sparse matrix A. We assume that A is a pattern matrix, i.e., all non-zero
entries are equal to 1. This partitioning is a set of lists of the rows of A, where rows in
each list are in the same block row. On input, the caller provides a threshold, θ, specify-
ing the minimum value of S(u, v) at which two rows may be considered as belonging to
the same block row. The procedure greedily examines rows sequentially, starting at row
0, and maintains a list of all row indices Cur block in the current block row. Each row is
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Figure 6: Logical grid (block partitioning) after greedy conversion to VBR format: Ma-
trix 13-ex11 . We show a 50×50 submatrix beginning at position (10001, 10001) in Ma-
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ner in positions (4,5) and (5,4) “break-up” the following contiguous blocks: one beginning
at (39,3) and ending at (44,5), and another extending from (3,39) to (5,44).
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compared to the first row of the current block, and if their similarity exceeds θ, the row is
added to the current block row. Otherwise, the procedure starts a new block row.

Procedure PartitionRows( A, θ )
1 Cur block← [0] /* Ordered list of row indices in current block */
2 All blocks← ∅
3 for i = 1 to m− 1 do /* Loop over rows */
4 Let u← row Cur block[0] of A /* First row in current block */
5 Let v ← row i of A
6 if S(uT , vT ) ≥ θ then
7 Append i onto Cur block

else
8 All blocks← All blocks ∪ Cur block
9 Cur block← [i]
10 All blocks← All blocks ∪ Cur block
11 return All blocks

We may partition the columns using a similar procedure. However, all of the matrices in
Table 1 are structurally (but not numerically) symmetric, so the row partition can be used
as a column partition. The SPARSKIT CSR-to-VBR routine can take these row and column
partitions as inputs, and returns A in VBR format. The conversion routine fills in explicit
zeros to make the blocks conform to the partitions.

Applying Procedure PartitionRows to Matrix 13 with θ = 0.7 shifts the non-zero dis-
tribution so that 3×3 blocks contain 81% of all stored values (including filled in zeros), in-
stead of just 23% when θ = 1. The fill ratio (stored values including filled in zeros divided
by true number of non-zeros) is 1.01 at θ = 0.7. Thus, more opportunities for blocking
become available at the cost of only a 1% increase in flops. Section 4 discusses how we
chose θ in our experiments.

3.2 Splitting the non-zero pattern

We handle multiple blocks sizes by first computing the distribution of work (i.e., non-zero
elements) over block sizes from the VBR data structure, and then computing an s-way
splitting of the matrix A into a sum of matrices A = A1 + . . . + As, where Ai holds all non-
zeros of a particular block size and is stored in UBCSR format. We consider structurally
disjoint splittings, i.e., Ai and Aj have no non-zeros in common when i 6= j.

Given s, a list of block sizes for each term Ai, and a fill threshold θ (Section 3.1), we
consider each term Ai in turn, repeatedly extracting all blocks of size ri × ci and returning
the remaining non-zeros in A0:

Procedure Split(A, θ, r1, c1, . . . , rs, cs)
1 Let A1, A0 ← SplitOnce(A0, θ, ri, ci)
2 for i = 2 to s− 1 do
3 Ai, A0 ← SplitOnce(A0, 1.0, ri, ci)
4 As ← A0

5 return A1, . . . , As

This procedure uses θ only at the first splitting, although in principle one could use a
different threshold at each i.
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For each term Ai, the auxiliary procedure SplitOnce converts the current non-zero
pattern A0 to VBR using PartitionRows (Section 3.1), greedily extracts ri × ci blocks,
stores these blocks in Â in UBCSR format, and finally returns Â and the leftover non-zeros:

Procedure SplitOnce (A, θ, r, c)
1 Let V ← A converted to VBR format at threshold θ

2 Let Â← empty matrix
3 foreach block row I in V , in increasing order of row index do
4 foreach block b in I of size at least r×c,

in increasing order of column index do
5 Convert block b into as many non-overlapping but adjacent

r×c blocks as possible, with the first block aligned at the
upper left corner of b

6 Add these blocks to Â

7 return Â in UBCSR format, A− Â in CSR format

This procedure does not extract exact r×c blocks, but rather extracts as many non-overlapping
r×c blocks as possible from any block of size at least r×c (lines 4–5).

Since SplitOnce is a greedy algorithm, the order in which the block sizes are specified
matters. We specify how we deal with this issue experimentally in Section 4.

3.3 An unaligned block compressed sparse row format

We handle unaligned block rows in UBCSR format by simply augmenting the usual BCSR
data structure with an additional array of row indices Arowind such that Arowind[I] con-
tains the starting index of block row I . Listing 1 shows an example of the 2×3 UBCSR
code to compute the SpMV operation, y ← y + A · x, where A is the sparse matrix and x, y
are dense vectors. The array Aval stores the non-zero values block-by-block, where blocks
from the same block row are stored consecutively and each block is stored in row-major
order. The array Acolind stores the starting column index for each block. The array Aptr
stores the start of each block row in Aind. Readers familiar with BCSR will recognize that
Listing 1 differs from its BCSR counterpart essentially at lines 7 and 8, where we must load
the elements of y indirectly for UBCSR.

4 Experimental Methods

The split UBCSR implementation of SpMV has the following parameters: the similarity
threshold θ which controls fill, the number of splitting terms s, and the block sizes for all
terms, r1 × c1, . . . , rs × cs. Given a matrix and machine, we select these parameters by the
empirical search procedure described in this section.

Such an exhaustive search is generally not practical at run-time, owing to the cost
of conversion. For instance, the time to execute SplitOnce just once is roughly compa-
rable in cost to the conversion cost observed for BCSR conversion—between 5–40 refer-
ence SpMVs [35]. While automated methods exist for selecting a block size in the BCSR
case [7, 15, 35, 37], none exist for the split UBCSR case as far as we know. Thus, our results
(Section 5) should be interpreted as an empirical upper-bound on how well we expect to
be able to do. We believe the exhaustive experimental data will inform the future develop-
ment of parameter selection heuristics in the split UBCSR case.
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Listing 1: Example 2x3 matrix-vector multiply implementation for sparse UBCSR matri-
ces. Multiplication by each block is fully unrolled (lines 16–18). Only the indirect load of y
at lines 7–8 would differ in a BCSR implementation.

1 void sparse mvm ubcsr 2x3( int M, const double∗ Aval,
const int∗ Arowind, const int∗ Acolind, const int∗ Aptr,

3 const double∗ x, double∗ y )
{

5 int I ;
for( I = 0; I < M; I++ ) { /∗ loop over block rows ∗/

7 double∗ yp = y + Arowind[I]; /∗ block row start ∗/
register double y0 = yp[0], y1 = yp[1];

9 int jj ;
for( jj = Aptr[I ]; jj < Aptr[I+1]; jj ++, Aval += 6 ) { /∗ loop over non−zero blocks ∗/

11 const double∗ xp = x + Acolind[jj ];
register double x0 = xp[0], x1 = xp[1], x2 = xp[2];

13 /∗ fully unrolled and register −tiled block multiply ∗/
y0 += Aval[0]∗x0; y1 += Aval[3]∗x0;

15 y0 += Aval[1]∗x1; y1 += Aval[4]∗x1;
y0 += Aval[2]∗x2; y1 += Aval[5]∗x2;

17 } /∗ jj ∗/
yp[0] = y0; yp[1] = y1;

19 } /∗ I ∗/
}

4.1 Choosing the similarity threshold, θ

We consider just two values of θ: θ = 1 (“exact match” partitioning) and θ = θmin, chosen
as follows. For all θ ∈ Θ = {0.5, 0.55, 0.6, . . . , 1.0}, we compute the non-zero distribution
over block sizes after conversion to VBR format. Denote the block sizes by r1×c1, . . . , rt×ct.
Consider a splitting A = A1 +A2 + . . .+At at θ, where each term Ai contains only the non-
zeros contained in block sizes that are exactly ri×ci, stored in UBCSR format. Let θmin ∈ Θ
be the threshold that minimizes the total size (bytes) of the data structure needed to store all
Ai under this splitting, including all indices. Only for Matrices 10, 13, and 17 is θmin 6= 1,
as indicated in Appendix B. We refer the reader elsewhere for the actual distributions at
various values of θ [35, Appendix F].

4.2 Choosing the number of splittings, s

We consider 2 ≤ s ≤ 4, where As always contains the “leftover” non-zeros stored in CSR
format. We allow As to have no elements if a particular splitting leads to no 1×1 blocks;
multiplication by As becomes a no-op in this case. Although it is possible to consider
larger upper limits than 4, there were relatively few instances in which even s = 4 led to
an empirically optimal implementation in our test suite (see Section 5).

4.3 Choosing the block sizes, {ri × ci}

Given θ and s, we perform an exhaustive empirical search over possible block sizes for
each term using the following procedure.
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1. We convert A to VBR format once to obtain a distribution of non-zeros over block
sizes as in Figure 5 (left), rank these block sizes in decreasing order of matrix non-
zeros each contains, and consider the top 3.

For Figure 5 (left), the top 3 block sizes are 2×2, 3×2, and 2×3.

2. We then compute a set B of candidate block sizes to use in the splitting based on the
factors of the top 3 block sizes in the distribution.

For example, suppose the top 3 block sizes are 2×2, 3×3, and 8×1. Then the set of
all factors dividing the row block sizes are R = {1, 2, 3, 4, 8}, and the column factors
are C = {1, 2, 3}. The set of candidate block sizes for each term is the cross-product,
B = R × C − {(1, 1)}, where we have removed the 1×1 block size because As will
always be in CSR format.

3. For every subset b = {(r1, c1), . . . , (rs−1, cs−1)} ⊆ B, we measure the performance
of split UBCSR using the block sizes b, again with As stored in CSR. There are

( |B|
s−1

)
such subsets.

However, the result of Split depends on the order of the block sizes. Thus, we actu-
ally try not only all subsets of B, but all permutations of each b ⊆ B as well.

5 Results and Discussion

We show that the split UBCSR implementation of Section 3 often improves performance
relative to a traditional register-tiled BCSR implementation for the matrices in Table 1 and
hardware platforms listed in Table 3. Even when performance does not improve signifi-
cantly, we reduce the overall storage.

5.1 Experimental setup

The 10 test matrices are listed in Table 1, and the 4 test platforms in Table 3. All perfor-
mance is reported in Mflop/s, but we do not count flops on explicitly filled non-zeros as
work. Thus, for a given matrix, these Mflop/s may be regarded as inverse time. Each mea-
surement is the median of 25 trials; the median values were always close to the minimums.

For a given matrix and platform, we are particularly interested in comparing the best
split UBCSR implementation (see Section 4) against the best BCSR implementation. The
best BCSR implementation is chosen by exhaustively searching all block sizes up to 12×12,
as done in prior work [15, 35, 37]. We also sometimes refer to the BCSR implementation as
the register blocking implementation following the convention of earlier work.

5.2 Analysis and discussion

The left plots of Figures 8–11 compare the performance of the following implementations,
for each platform and matrix. (We omit matrices that fit within a machine’s largest cache.)

• Best BCSR implementation for a dense matrix (black hollow square): We store a dense
matrix in BCSR format, and report the best performance over all block sizes up to
12×12. This data point is a kind of empirical upper-bound on SpMV performance,
since the matrix has no sparsity and no run-time irregular memory access.
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block sizes used, see Table 4, Appendix B.
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Figure 13: Speedups and compression ratios after splitting + UBCSR storage, compared
to BCSR. (Left) We compare the following speedups: UBCSR storage + splitting over
BCSR, BCSR over the reference CSR implementation, and UBCSR storage + splitting over
the reference. For each platform, we show minimum, median, and maximum speedups
for each pair. (Right) We compare the compression ratios for the same three pairs of imple-
mentations.
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Sun Intel IBM Intel
Ultra 2i Pentium III-M Power4 Itanium 2

MHz 333 800 1300 900
OS Solaris v5.8 Linux 2.4 AIX 5.2 Linux 2.4

Compiler Sun cc v5.6 Intel C v8.1 IBM xlc v6 Intel C v7.1
Peak Mflop/s 667 800 5200 3600

DGEMM Mflop/s 425 640 3500 3500
ATLAS Goto’s ESSL Goto’s

DGEMV Mflop/s 58 147 900 1330
ATLAS Intel MKL v5.2 ESSL Goto’s

Peak MB/s 664 915 11000 6400
STREAM Triad MB/s 215 570 2286 4028
No. FP regs (double) 16 8 32 128

L1 size 16 KB 16 KB 32 KB 32 KB
Line size 16 B 32 B 128 B 64 B

Associativity direct 4-way 2-way 4-way
L2 size 2 MB 256 KB 1.5 MB 256 KB

Line size 64 B 32 B 128 B 128 B
Associativity 2-way 4-way 8-way 8-way

L3 size 16 MB 1.5 MB
Line size – – 512 B 128 B

Associativity 8-way 8-way
TLB entries 64 64 1024 128
Page size 8 KB 4 KB 4 KB 16 KB

Memory size 256 MB 256 MB 4 GB 2 GB

Table 3: Evaluation platforms. In addition to machine parameters, we show dense BLAS
performance for double-precision matrix-matrix multiply (DGEMM) and matrix-vector
multiply (DGEMV), and sustainable bandwidth according to the STREAM benchmark.

• Median, minimum, and maximum BCSR performance on Matrices 2–9 (black hollow cir-
cle, black solid diamond, and black solid downward-pointing triangle, respectively):
For Matrices 2–9, consider the best BCSR performance observed after an exhaustive
search. We show the median, minimum, and maximum of these values.

• Splitting and UBCSR storage (red solid squares): Performance of the best split UBCSR
SpMV implementation, chosen by the limited search procedure in Section 4.

• Fastest and slowest component under splitting (blue triangle and dot): We measure the
raw Mflop/s of SpMV for each component Ai. We show the fastest component by a
blue triangle, the slowest by a blue dot, and the two components are connected by
a vertical dash-dot line. These points suggest (indirectly) to what extent the fastest
and slowest component of each splitting contributes to overall performance.

• BCSR implementation (green dots): Best BCSR performance from earlier reports [15,
35].

• Reference (black asterisks): Performance in CSR format.
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For reference, we also show in the left subplots of Figures 8–11 the performance of tuned
dense matrix-vector multiply (DGEMV) on a large (out-of-cache) matrix, shown by a blue
horizontal dash-dot line (also labeled by performance in Mflop/s).

In the right subplots of Figures 8–11, we show the total size (in doubles) of the data
structure normalized by the number of true non-zeros (i.e., excluding fill).

We summarize the main observations as follows:

1. By relaxing the block row alignment using UBCSR storage, it is possible to ap-
proach the performance seen on Matrices 2–9. A single block size and irregular
alignment characterize the structure of Matrices 12, 13, A, C, and E. The best abso-
lute performance under splitting within a given platform is typically seen on these
matrices. Furthermore, this performance is roughly comparable to median BCSR
performance taken over Matrices 2–9 on the same platform. These two observations
suggest that the overhead of the additional row indices in UBCSR is small. We sum-
marize how closely the split implementations approach the performance observed
for Matrices 2–9 in Figure 12, discussed in more detail below.

2. Median speedups, taken over the matrices in Table 1 and measured relative to the
reference performance, range from 1.26× (Ultra 2i) up to 2.1× (Itanium 2). Fur-
thermore, splitting can be up to 1.8× faster than BCSR alone. We summarize the
minimum, median, and maximum speedups in Figure 13 (left).

3. Splitting can lead to a significant reduction in total matrix storage. The compres-
sion ratio of splitting over the reference is the size of the reference (CSR) data struc-
ture divided by the size of the split+UBCSR data structure. The median compression
ratios of splitting over the reference, taken over the matrices in Table 1, are between
1.26–1.3×. Compared to BCSR, the compression ratios of splitting can be as high as
1.56×. We summarize the minimum, median, and maximum compression ratios in
Figure 13 (right).

These three findings confirm the potential improvements in speed and storage using UBCSR
format and splitting. We elaborate on these conclusions below.

5.2.1 Proximity to uniform BCSR performance

The performance under splitting and UBCSR storage can approach or even slightly exceed
the median BCSR performance on FEM Matrices 2–9. For each platform, we show in Fig-
ure 12 the minimum, median, and maximum performance on the matrices in Table 1. Per-
formance is displayed as a fraction of median BCSR performance taken over Matrices 2–9.
We also show statistics for BCSR only and reference implementations. The median fraction
achieved by splitting exceeds the median fraction achieved by BCSR on all but the Itanium
2. On the Pentium III-M and Power4, the median fraction of splitting exceeds the maxi-
mum of BCSR only, demonstrating the potential utility of splitting and the UBCSR format.
The maximum fraction due to splitting slightly exceeds 1 on all platforms.

The data for the individual platforms, Figures 8–11 (left), shows that the best perfor-
mance is attained on Matrices 12, 13, A, C, and E, which are all dominated by a single
unaligned block size (see Table 1). However, the fastest component of the splitting is com-
parable in performance to the median FEM 2–9 performance in at least half the cases on all
platforms. Not surprisingly, splitting performance can be limited by the slowest compo-
nent, which in most cases is the CSR implementation, or in the case of Matrix 15, “small”
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block sizes like 2×1 and 2×2. On Itanium 2, the fastest component is close to or in excess
of the BCSR performance (Figure 11 (left)) but overall performance never exceeds BCSR
performance. This observation suggests the importance of targeting the CSR (1×1) imple-
mentation for low-level tuning [35, Chap. 4].

5.2.2 Median speedups

We compare the following speedups on each platform in Figure 13 (left):

• Speedup of splitting over BCSR (blue solid diamonds)

• Speedup of BCSR over the reference (green solid circles)

• Speedup of splitting over the reference (red solid squares)

Figure 13 (left) shows minimum, median, and maximum speedups taken over the matrices
in Table 1.

Splitting is at least as fast as BCSR on all but the the Itanium 2 platform. Median
speedups, taken over the matrices in Table 1 and measured relative to the reference per-
formance, range from 1.26× (Ultra 2i) up to 2.1× (Itanium 2). Relative to BCSR, median
speedups are relatively modest, ranging from 1.1–1.3×. However, these speedups can be
as much as 1.8× faster.

5.2.3 Reduced storage requirements

Though the speedups can be relatively modest, splitting can significantly reduce storage
requirements. The asymptotic storage for CSR, ignoring row pointers, is 1.5 doubles per
non-zero when the number of integers per double is 2 [35, Chap. 3]. When abundant
dense blocks exist, the storage decreases toward a lower limit of 1 double per non-zero.
Figures 8–11 (right) compare the storage per non-zero between CSR, BCSR, and the split-
ting implementations. We also show the minimum, median, and maximum storage per
non-zero taken over FEM Matrices 2–9 for BCSR. Except for Matrix 15, splitting reduces
the storage on all matrices and platforms, and is often comparable to the median storage
requirement for Matrices 2–9.

In the case of Matrix 15, the slight increase in storage is due to a small overhead in
UBCSR storage. All natural dense blocks are 2×1 or 2×2 and uniformly aligned for this
matrix [35, Appendix F].

On Itanium 2, the dramatic speedups over the reference from BCSR come at the price of
increased storage—just over 2 doubles per non-zero on Matrices 15, 17, and B. Though the
splitting implementations are slower, they dramatically reduce the storage requirement in
these cases.

We summarize the overall compression ratios across platforms in Figure 13 (right). We
define the compression ratio for format a over format b as the size of the matrix in format
b divided by the size in format a (larger ratios mean a requires less storage). We compare
the compression ratio for the following pairs of formats in Figure 13 (right):

• Compression ratio of splitting over BCSR (blue solid diamonds)

• Compression ratio of BCSR over the reference (green solid circles)

• Compression ratio of splitting over the reference (red solid squares)
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Median compression ratios, taken over the matrices in Table 1, for the split/UBCSR repre-
sentation over BCSR range from 1.15 to 1.3. Relative to the reference, the median compres-
sion ratio for splitting ranges from 1.24 to 1.3, but can be as high as 1.45, which is close to
the asymptotic limit.

6 Related Work

The inspiration for this study comes from recent work on splitting by Geus and Röllin [11],
Pinar and Heath [25], and Toledo [33], and the performance gap we have observed infor-
mally [15, 37, 14]. Geus and Röllin explore up to 3-way splittings for a particular appli-
cation matrix used in accelerator cavity design, but the splitting terms are still based on
row-aligned BCSR format. (The last splitting term in their implementations is also fixed to
be CSR, as in our work.) Pinar and Heath restrict their attention to 2-way splittings where
the first term is 1×c format and the second in 1×1. Toledo also considered 2-way split-
tings and block sizes up to 2×2, as well as low-level tuning techniques (e.g., prefetching) to
improve memory bandwidth. The main distinction of our work is relaxed row-alignment.

We use conversion to VBR as a heuristic for identifying existing block structure. Vas-
silevska and Pinar recently showed that finding the maximum number of non-overlapping
dense blocks is NP-Complete [34], motivating the VBR-based analysis. Non-zero structure
analysis tools developed by Bik and Wijshoff [4] and Knijnenburg and Wijshoff [18] pro-
vide a complementary means by which to detect and extract non-zero patterns.

Split UBCSR can be combined with other techniques that improve register-level reuse
and reuse of the matrix entries, including multiplication by multiple vectors [14, 2]. Speedups
of up to 7× over CSR, and 2.5× over the single-vector case have been observed [15, 19].

Section 2 notes the matrices were all structurally symmetric, and sometimes numeri-
cally symmetric as well. Symmetric BCSR storage yields speedups as high as 2.8× over
non-symmetric CSR, 2.1× over non-symmetric BCSR, and of course significantly reduces
storage [19]. Symmetric multiple vector implementations can be even faster [19].

While much of the work above focuses on exploiting blocks, diagonals and bands are
another common substructure. The classical setting in which diagonal structure-centric
formats like diagonal (DIAG) format and jagged diagonal (JAD) format have been applied
is on vector architectures [38, 23, 24]. Recent work has shown the potential pay-offs from
careful application on superscalar cache-based microprocessors [35, Chap. 5].

Pinar and Heath reorder rows and columns of a sparse matrix to create dense rectan-
gular block structure which might then be exploited by splitting [25]. Their formulation
is based on the Traveling Salesman Problem. In the context of SPARSITY, Moon, et al.,
have applied this idea to the SPARSITY benchmark suite, showing speedups over conven-
tional register blocking of up to 1.5× on Matrices 17, 20, 21, and 40. Heras, et al., have
also proposed TSP-based reordering schemes, with an emphasis on theoretical aspects of
formulating the problem [13]. Open issues include when to apply TSP-based reordering,
what approximation heuristics are likely to work best, and what the run-time costs will be.

Related to these reordering techniques are classical methods that reduce the matrix
bandwidth or fill for numerical factorization [8, 17, 1, 27, 5, 10, 31, 32]. Orderings have
been applied to SpMV as well [16, 33, 6, 12]. Temam and Jalby have proven in a simple
1-level cache model that reducing bandwidth helps to minimize self-interference misses,
suggesting additional careful study may be fruitful [30].

The class of matrices represented by Matrices 18–44 of the SPARSITY benchmark suite
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largely remain difficult. One effective technique is cache-level blocking [22, 14]. Cache
blocking reorganizes a large sparse matrix into a collection of smaller, disjoint rectangular
blocks to improve temporal access to elements of x. The largest improvements occur on
large, randomly structured matrices like linear programming Matrices 41–44 of the SPAR-
SITY test suite, as well as matrices from latent semantic indexing applications [3].

Temam and Jalby propose an interesting and as-yet unexplored variation on cache
blocking we refer to as diagonal cache blocking [30]. They show by a theoretical analysis
in a simple cache model that reducing the bandwidth helps to minimize self-interferences
misses. They further observe that blocking the matrix in “bands” achieves the same effect,
though we are not aware of any empirical validation to date.

Better low-level tuning of the CSR SpMV implementation may also be possible. Re-
cent work on low-level tuning of SpMV by unroll-and-jam (Mellor-Crummey, et al. [20]),
software pipelining (Geus and Röllin [11]), and prefetching (Toledo [33]) are promising
starting points. On the vector Cray X1, just one additional permutation of rows in CSR,
with no other data reorganization, yields order of magnitude improvements [9].

Another promising line of research is considering how to reuse the matrix itself in
the context of higher-level kernels and solvers, since just reading the matrix dominates
the execution time of SpMV [37]. Examples include recent work on automatically tuning
AT A · x and powers of a matrix, Ak · x [29, 35].

7 Conclusions and Future Work

This paper extends the classical BCSR format to handle matrices with irregularly aligned
and mixed dense block substructure, thereby reducing the gap between various classes
of FEM matrices. We are making this new split UBCSR data structure available in the
Optimized Sparse Kernel Interface (OSKI), a library of automatically tuned sparse matrix
kernels that builds on SPARSITY, an earlier prototype [36, 15].

However, our results are really only empirical bounds on what may be possible since
they are based on exhaustive search over split UBCSR’s tuning parameters (Section 4). We
are pursuing effective and cheap heuristics for selecting these parameters, and our data
already suggest the form this heuristic might take. One key component is a cheap estima-
tor of the non-zero distributions over block sizes, which we measured in this paper exactly
using VBR. This estimator would be similar to those proposed in prior work for estimating
fill in the BCSR case [15, 35], and would suggest the number of splittings and candidate
block sizes. Earlier heuristic models for the BCSR case, which use benchmarking data to
characterize the machine-specific performance at each block size, could be extended to the
UBCSR case and combined with the estimation data [7, 15, 35].

We are also pursuing combining split UBCSR with many of the other SpMV optimiza-
tions surveyed in Section 6, including symmetry, multiple vectors, and cache blocking. In
the case of cache blocking, CSR is often used as an auxiliary data structure; replacing the
use of CSR with the 1×1 UBCSR data structure itself could reduce some of the row pointer
overhead when the matrix is very sparse.
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A Variable block row format

We illustrate VBR format in Figure 14, where we show a m×n=6×8 matrix A containing
k = 19 non-zeros. Consider a partitioning of this matrix into M = 3 block rows and N = 4
block columns as shown, yielding K = 6 blocks, each shaded with a different color. The
VBR data structure is composed of the following 6 arrays:

• brow (length M +1): starting row positions in A of each block row. The Ith block row
starts at row brow[I] of A, ends at brow[I + 1]− 1, and brow[M ] = m.

• bcol (length N + 1): starting column positions in A of each block column. The J th

block column starts at column bcol[J ] of A, ends at bcol[J + 1]−1, and brow[N ] = n.

• val (length k): non-zero values, stored block-by-block. Blocks are laid out by row.
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• val ptr (length K + 1): starting offsets of each block within val. The bth block starts
at position val ptr[b] in the array val. The last element val ptr[K] = k.

• ind (length K): block column indices. The bth block begins at column bcol[ind[b]].

• ptr (length M + 1): starting offsets of each block row within ind. The Ith block row
starts at position ptr[I] in ind.

The pseudo-code for SpMV using VBR appears below. Unlike BCSR, r and c are not fixed,
making it difficult to unroll and register-tile line 11. We would also need to introduce
branches to handle different fixed block sizes. The implementation in SPARSKIT uses
2-nested loops to perform the block multiply [28]. VBR performs poorly due to the over-
heads incurred by these loops.

type brow : int[M + 1]
type bcol : int[N + 1]
type val : real[k]
type val ptr : int[K + 1]
type ind : int[K]
type ptr : int[M + 1]

1 foreach block row I do
2 i0 ← brow[I] /* starting row index */
3 r ← brow[I + 1]− brow[I] /* row block size */
4 Let ŷ ← yi0:(i0+r−1)

5 for b = ptr[I] to ptr[I + 1]− 1 do /* blocks within Ith block row */
6 J ← ind[b] /* block column index */
7 j0 ← bcol[J ] /* starting column index */
8 c← bcol[J + 1]− bcol[J ] /* column block size */
9 Let x̂← xj0:(j0+c−1)

10 Let Â← ai0:(i0+r−1),j0:(j0+c−1)

/* Â = block of A stored in val[val ptr[b] : (val ptr[b + 1]− 1)] */

11 Perform r×c block multiply, ŷ ← ŷ + Â · x̂
12 Store ŷ

Figure 14: Variable block row (VBR) format. Here, a 6×9 sparse matrix with k = 19
non-zeros is partitioned into 3 block rows and 4 block columns, yielding 6 blocks.
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Splitting
(stored

nz)
/

Register Blocking (ideal 1×1
Mflop/s ropt×copt Fill Mflop/s θ rk×ck nz) Mflop/s Mflop/s

10 39 2×1 1.10 43 0.9 3×3 0.77 52 34
1×1 0.24 28

41 1 3×3 0.63 52
1×1 0.37 30

12 38 2×2 1.24 51 1 3×3 0.96 54 33
1×1 0.04 31

13 37 2×1 1.14 37 1 3×1 0.34 52 34
1×1 0.66 34

15 40 2×1 1.00 39 1 2×1 1.00 40 31
1×1 0.00 0

17 32 1×1 1.00 34 0.8 2×1 0.24 61 32
1×1 0.77 33

33 1 3×1 0.12 139
1×1 0.88 33

A 39 2×2 1.22 47 1 6×6 0.82 57 32
1×1 0.18 27

B 25 1×1 1.00 27 1 2×1 0.48 32 25
1×1 0.52 24

C 44 3×3 1.22 53 1 6×6 0.94 58 34
1×1 0.06 23

D 38 2×1 1.14 39 1 2×2 0.77 46 34
1×1 0.23 25

E 38 8×2 1.45 57 1 6×2 0.99 60 34
1×1 0.01 8

Table 4: Best unaligned block compressed sparse row splittings on variable block ma-
trices, compared to register blocking: Ultra 2i. Splitting data for Figure 8.

B Variable Block Splitting Data

Tables 4–7 show the splittings used in Figures 8–11. For each matrix (column 1), we show
the following. Columns 2–4 show the best register blocking performance and correspond-
ing block size, fill ratio. Columns 5–9 show the best performance with splitting, using
UBCSR. The matrix is initially converted to VBR using a fill threshold of θ (column 6). We
show the block size rk×ck used for each component of the splitting (column 7). We also
show the corresponding number of non-zeros (divided by ideal non-zeros) for the k-th
component (column 8), and estimated performance of just the k-th component (column 9)
using the non-zero count in column 8. If the best splitting performance occurs for θ < 1,
we also show the data corresponding to the best performance when θ = 1. Finally, column
10 shows the CSR reference performance.
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Splitting
(stored

nz)
/

Register Blocking (ideal 1×1
Mflop/s ropt×copt Fill Mflop/s θ rk×ck nz) Mflop/s Mflop/s

10 77 2×2 1.21 93 0.9 3×3 0.77 120 61
1×1 0.25 57

90 1 3×3 0.63 118
3×1 0.11 78
1×1 0.26 59

12 83 2×2 1.24 115 1 3×3 0.96 111 68
1×1 0.04 40

13 84 3×2 1.40 105 0.7 3×3 0.82 112 69
3×2 0.07 93
1×1 0.12 55

76 1 3×3 0.23 121
2×1 0.23 78
1×1 0.53 65

15 79 2×1 1.00 79 1 2×1 1.00 79 64
1×1 0.00 0

17 69 1×1 1.00 70 0.8 4×1 0.17 100 69
1×1 0.84 67

68 1 3×1 0.12 84
1×1 0.88 67

A 83 2×2 1.22 102 1 3×3 0.88 108 65
1×1 0.12 50

B 46 1×1 1.00 52 1 2×1 0.48 59 46
1×2 0.26 51
1×1 0.26 43

C 91 3×3 1.22 105 1 3×6 0.94 115 65
1×1 0.06 42

D 79 2×2 1.29 80 1 3×2 0.45 102 67
2×2 0.36 91
1×1 0.19 47

E 90 2×2 1.11 115 1 6×6 0.99 114 65
1×1 0.01 16

Table 5: Best unaligned block compressed sparse row splittings on variable block ma-
trices, compared to register blocking: Pentium III-M. Splitting data for Figure 9.
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Splitting
(stored

nz)
/

Register Blocking (ideal 1×1
Mflop/s ropt×copt Fill Mflop/s θ rk×ck nz) Mflop/s Mflop/s

10 549 2×1 1.10 643 0.9 6×1 0.56 758 434
3×1 0.30 681
2×1 0.09 623
1×1 0.07 323

579 1 3×2 0.61 703
3×1 0.13 590
1×1 0.26 414

A 442 2×1 1.10 596 1 6×3 0.84 728 334
1×1 0.16 355

B 199 1×1 1.00 363 1 2×2 0.22 355 199
2×1 0.26 461
1×2 0.26 354
1×1 0.26 336

C 332 3×1 1.11 453 1 6×3 0.94 463 224
1×1 0.06 254

D 477 1×1 1.00 524 1 3×2 0.45 701 477
2×2 0.36 550
1×1 0.19 280

E 530 4×1 1.17 657 1 6×3 0.99 731 427
1×1 0.01 71

Table 6: Best unaligned block compressed sparse row splittings on variable block ma-
trices, compared to register blocking: Power4. Splitting data for Figure 10.
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Splitting
(stored

nz)
/

Register Blocking (ideal 1×1
Mflop/s ropt×copt Fill Mflop/s θ rk×ck nz) Mflop/s Mflop/s

10 698 4×2 1.45 537 1 6×1 0.49 945 250
3×1 0.25 607
1×1 0.26 287

12 774 4×2 1.48 643 1 3×1 0.97 710 276
1×1 0.03 138

13 749 4×2 1.54 622 0.7 3×1 0.89 720 277
2×1 0.12 534
1×1 0.00 25

421 1 3×1 0.34 681
2×1 0.16 517
1×1 0.50 329

15 514 4×1 1.78 510 1 2×1 1.00 559 260
1×1 0.00 0

17 536 4×1 1.75 338 0.8 4×1 0.17 723 269
1×1 0.84 326

330 1 2×1 0.16 442
1×1 0.84 325

A 772 4×2 1.43 689 1 6×1 0.87 957 333
1×1 0.13 240

B 342 2×2 1.82 315 1 2×1 0.48 389 254
1×2 0.26 302
1×1 0.26 255

C 826 4×2 1.34 795 1 6×1 0.95 982 337
1×1 0.05 166

D 718 4×2 1.55 433 1 4×2 0.21 804 331
2×2 0.56 582
1×1 0.23 226

E 895 4×2 1.23 842 1 6×1 0.99 984 337
1×1 0.01 36

Table 7: Best unaligned block compressed sparse row splittings on variable block ma-
trices, compared to register blocking: Itanium 2. Splitting data for Figure 11.
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